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Transitional flow between contra-rotating disks 

By M. KILICT, X. GAN AND J. M. OWEN 
School of Mechanical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK 

(Received 15 November 1993 and in revised form 30 June 1994) 

This paper describes a combined computational and experimental study of the flow 
between contra-rotating disks for - 1 6 r < 0 and Re, = lo5, where r is the ratio of 
the speed of the slower disk to that of the faster one and Re, is the rotational Reynolds 
number of the faster disk. For r = 0, the rotor-stator case, laminar and turbulent 
computations and experimental measurements show that laminar Batchelor-type flow 
occurs: there is radial outflow in a boundary layer on the rotating disk, inflow on the 
stationary disk and a rotating core of fluid between. For r= - 1, the laminar 
computations produce Batchelor-type flow : there is radial outflow on both disks and 
inflow in a free shear layer in the mid-plane, on either side of which is a rotating core 
of fluid. The turbulent computations and the velocity measurements for r = - 1 show 
Stewartson-type flow: radial outflow occurs in laminar boundary layers on the disks 
and inflow occurs in a non-rotating turbulent core between the boundary layers. For 
intermediate values of I-, transition from Batchelor-type flow to Stewartson-type flow 
is associated with a two-cell structure, the two-cells being separated by a streamline 
that stagnates on the slower disk; Batchelor-type flow occurs radially outward of the 
stagnation point and Stewartson-type flow radially inward. The turbulent com- 
putations are mainly in good agreement with the measured velocities for r = 0 and 
r = - 1, where either Batchelor-type flow or Stewartson-type flow occurs; there is 
less good agreement at intermediate values of r, particularly for r = -0.4 where the 
double transition of Batchelor-type flow to Stewartson-type flow and laminar to 
turbulent flow occurs in the two-cell structure. 

1. Introduction 
Contra-rotating turbines may be used in future generations of gas-turbine aero- 

engines to drive the contra-rotating fans. The flow and heat transfer between the 
contra-rotating disks, to which the turbine blades are attached, are of interest to the 
gas-turbine designer, and there is comparatively little information on such flows. 

Batchelor (1951) considered the solution of the Navier-Stokes equations for the case 
of infinite disks in the range - 1 < I' < 0, where r is the ratio of the angular speed of 
the slower disk, O,, to that of the faster one, Ol. Assuming similarity solutions, like 
those used by von Karman (1921), Batchelor produced ordinary differential equations 
from which he deduced, using physical arguments, the behaviour of the streamlines. 

Figures l(a) and l(b) show the streamlines and distributions of the tangential 
component of velocity, 5, obtained by Batchelor for r = 0 and r = - 1 at large 
rotational speeds (or, more correctly, at large values of 8 , s 2 / v ,  where s is the axial 
spacing and v the kinematic viscosity). For r = 0, which will be referred to as the rotor- 
stator case, there is radial outflow in a thin boundary layer on the rotating disk and 
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FIGURE I .  Streamlines predicted by Batchelor (1951): (a) r = 0; (b) r = - 1. 

inflow on the stationary one. Between the boundary layers, there is a rotating core of 
fluid in which the radial component of velocity is zero and there is an axial flow from 
the stationary to the rotating disk. For r = - 1, there is radial outflow in the boundary 
layers on both disks and radial inflow in a free shear layer (termed a transition layer 
by Batchelor) in the mid-plane ( z / s  = f, where z is the axial distance from disk 1). 
Between the shear layer and each boundary layer is a rotating core of fluid in which 
the radial component of velocity is zero and there is an axial flow from the shear layer 
to the adjacent disk. Batchelor noted that, ‘This singular solution may not be realizable 
experimentally, of course, but it has some intrinsic interest. ’ 

Stewartson (1953) obtained series solutions of the Navier-Stokes equations for low 
Reynolds numbers (a, s2/u d 40) and concluded that, for r = 0, there was a boundary 
layer on the rotating disk but none on the stationary one: there was no evidence of the 
core rotation predicted by Batchelor. For T = - 1, Stewartson showed that there 
would be radial outflow on both disks, but there was no suggestion of contra-rotating 
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FIGURE 2.  Computed streamlines for r = -0.3, Re, = 2.04 x lo4, G = 0.07 
(Dijkstra & van Heijst 1983). 

cores of fluid. He also carried out rudimentary experiments with two cardboard disks 
of 150 mm diameter, spaced up to 125 mm apart, and found no signs of core rotation 
f o r r = O o r r = - l .  

The Batchelor-Stewartson controversy has been the subject of many studies, and the 
interested reader is referred to Zandbergen & Dijkstra (1987) for a detailed description. 
For infinite disks, there are multiple solutions of the equations, of which Batchelor’s 
and Stewartson’s are both possible. For finite disks, however, the solution depends on 
whether the disks are open or enclosed: an enclosed rotor-stator system (r = 0) tends 
to produce Batchelor-type flow with core rotation; disks open to the atmosphere tend 
to produce Stewartson-type flow with no core rotation. 

A comprehensive computational and experimental study of laminar flow between 
contra-rotating disks was conducted by Dijkstra & van Heijst (1983) for -0.825 < 
r 6 0. Experimental measurements were made in a rig with glass disks of around 1 m 
diameter separated by a gap of 35 mm (G = 0.07, where G = s / b ,  b being the radius of 
the disks), and the fluid was water or a mixture of water and glycerine. For r = 0, they 
found Batchelor-type flow with radial outflow on the rotating disk, inflow on the 
stationary one, and a rotating core of fluid between. For -0.825 < r 6 -0.15, a two- 
cell structure was computed and observed, and an example of the computed 
streamlines for r = -0.3 and Re, = 2.04 x lo4 (where Re, = Q, b2/u) is shown in 
figure 2. Circulation is clockwise near the faster disk (the left-hand disk in figure 2) and 
anticlockwise near the slower one; a streamline separating the two cells stagnates on 
the slower disk at a non-dimensional radius of x = x,, (where x = r/b) .  The value of 
xSt increased as r was reduced but no reliable experimental or computational results 
were obtained for - 1 < r < -0.825, where wavy instabilities were observed. 

Gan, Kilic & Owen (1993) conducted a combined computational and experimental 
study for the case of antisymmetrical contra-rotation, r = - 1, for 2.3 x lo5 < Re, < 
1.2 x lo6, with and without superposed flow. The experimental apparatus and the 
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computational method were basically the same as those described below with the 
exception that a variant of Morse’s (1988, 1991 a, b) low-Reynolds-number k-e 
turbulence model was used in the computations rather than the Launder & Sharma 
(1 974) turbulence model used here. Laminar computations produced the Batchelor- 
type flow described above; computations using the turbulence model produced only 
Stewartson-type flow. Laser Doppler anemometry (LDA) measurements confirmed the 
turbulent computations, and no experimental evidence of Batchelor-type flow was 
found even for local rotational Reynolds numbers as low as x2Req = 2.2 x lo4: laminar 
boundary layers formed on the disks but the radial inflow in the (virtually non- 
rotating) core was always turbulent. 

The purpose of this paper is to study the flow between contra-rotating disks in the 
range - 1 d r d 0, and to examine how the transition from Batchelor-type flow at 
r = 0 to Stewartson-type flow at r = - 1 occurs. The computational method is outlined 
in $2, the experimental apparatus in $3, and a comparison between the computed and 
measured velocity distributions is presented in $4. 

2. Computed flow 
2.1. Computational method 

The Reynolds-averaged axisymmetric steady-state incompressible Navier-Stokes 
equations, in cylindrical-polar coordinates, were solved using the finite-volume 
multigrid elliptic solver described by Gan et al. (1993). The code used was a modified 
version of the elliptic multigrid solver described by Vaughan, Gilham & Chew (1989), 
where finite-volume equations were obtained using the control-volume approach of 
Patankar (1980) together with the SIMPLEC pressure-correction algorithm proposed by 
van Doormaal & Raithby (1984). The multigrid method was developed by Vaughan et 
al. for turbulent flow from the full-approximation-scheme employed by Lonsdale 
(1988) to solve the Navier-Stokes equations for laminar flow between corotating disks; 
a three-level V-cycle was used for the computations discussed below. Further details of 
the solver, the turbulence models and the convergence criteria are given by Kilic (1993). 
For the computations presented in this paper, either the flow was assumed to be 
laminar or the low-Rek-c turbulence model of Launder & Sharma (1974) was used. 

The computational geometry was based on the experimental rig described in $ 3 (and 
shown in figure 7). At the outer radius of the rig, r = b, a cylindrical ‘shroud’ was 
attached to each disk, and at the inner radius, r = a, a cylindrical tube was attached 
to each disk. There was a small axial clearance, sc, between the contra-rotating shrouds 
and between the contra-rotating tubes, and an axial clearance, s, between the disks. 
The geometry was defined in non-dimensional terms by: G = s/b = 0.12, G, = s,/b = 
0.016 and a / b  = 0.13. 

No-slip boundary conditions were used for all solid surfaces: V,  and V ,  were set to 
zero, and 5 was set to the appropriate speed of rotation. For the clearance between 
the shrouds at r = b and between the tubes at r = a, V ,  and V ,  were set to zero, and 5 
varied linearly from SZ, b to SZ2b or from SZ,a to Q,a. 

Grid-dependency tests were conducted for a number of non-uniform grids with up 
to 91 x 115 (axial x radial) nodes, and a grid with 67 x 67 nodes was found to give 
sensibly grid-independent results. The computations were carried out on one of the 
i860 nodes of a 16-node Meiko parallel computing facility. Typical times to achieve a 
converged solution on a 91 x 115 grid, which was used for the results presented below, 
ranged from 15 minutes to one hour for laminar flow and from one to two hours for 
turbulent flow. 
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FIGURE 3. Computed laminar streamlines for Re, = lo5, G = 0.12. 

2.2. Computedjlow structure 
Figure 3 shows the computed streamlines, in the (r,z)-plane, for laminar flow at 
Re, = lo5. The computations were carried out for G = 0.12 but the aspect ratio of 
the figures has been distorted to clarify the flow structure. The left-hand boundary 
corresponds to disk 1, the faster disk. 

For r = 0, Batchelor-type rotor-stator flow can be seen, with radial outflow in a thin 
boundary layer on the rotating disk and radial inflow on the stationary one. For 
x d 0.9, there is an axial flow from the boundary layer on the stationary disk to that 
on the rotating one. For x 2 0.9, the axial flow is in the reverse direction; most of the 
fluid is transferred axially in a thin boundary layer on the cylindrical shrouds at x = 1, 
but some fluid separates from the boundary layer on the rotating shroud and flows 
in an axial stream into the boundary layer on the stationary disk. 

For - 1 d r d - 0.2, the two-cell structure can be seen, with clockwise circulation 
near the faster disk and anticlockwise circulation near the slower one. As found by 
Dijkstra & van Heijst, the stagnation point of the separation streamlines moves 
radially outward on the slower disk as r is reduced. For -0.8 < F d -0.4, radial 
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inflow occurs in a free shear layer that originates near the stagnation point on the 
slower disk; radially outward of this stagnation point, there is a region of axial flow 
from the rotating disk to the stationary one. As r is reduced, the stagnation point 
moves radially outward compressing the region of axial flow : for r = - 0.6, the region 
is reduced to a thin free shear layer at x z 0.9 and a boundary layer on the shroud; for 

= -0.8, all the axial flow is confined to the boundary layer. For I-= - I ,  the 
streamlines are symmetrical about the mid-plane (z/s = i), and radial inflow occurs in 
a thin free shear layer in the mid-plane ( z / s  = i), consistent with Batchelor-type flow. 

The computed distributions of the non-dimensional radial and tangential com- 
ponents of velocity (K/Q, r and V , / s Z ,  r )  with the non-dimensional axial distance ( z / s ) ,  
are shown in figure 4. Referring to the distributions for x = 0.8, the following 
observations can be made. 
(i) For -0.4 < r < 0, there are separate boundary layers on both disks with radial 

outflow on disk 1 and inflow on disk 2. In the core between the boundary layers, 
V ,  is zero and T$ is invariant with z. 
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FIGURE 5 .  Computed turbulent streamlines for Re, = lo5, G = 0.12. 

(ii) For - 1 < f < -0.6, there is radial outflow in the boundary layers on both disks, 
and inflow occurs in a free shear layer close to the slower disk or, for f = - 1, in 
the mid-plane. Also, for r = - 1, contra-rotating cores of fluid are formed. 

These observations for x = 0.8, and the results for x = 0.4 and 0.6, are consistent with 
Batchelor-type flow. 

Figures 5 and 6 show the equivalent computations for the case where the turbulence 
model is used. For -0.4 d f < 0, the computed streamlines in figure 5 are broadly 
similar to those in figure 3 whereas those for - 1 6 f < -0.6 show that, for the 
turbulent computations, the radial inflow is not confined to a thin free shear layer. 
Referring to the computed velocity distributions for x = 0.8 in figure 6 it can be seen 
that for - 1 < f < - 0.6 there is very little core rotation and radial inflow occurs over 
the entire region between the two boundary layers. In particular, the contra-rotating 
cores have disappeared for f = - 1. It appears that, for - 1 < f <  -0.6, transition 
from laminar to turbulent flow in the core has destroyed the Batchelor-type flow and 
created Stewartson-type flow. For all the turbulent computations, the flow in the 
boundary layer on the faster disk always remains laminar. 
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FIGURE 6. Computed turbulent velocity distributions for Re, = lo5, G = 0.12. 
Symbols as for figure 4. 

It can also be seen for x = 0.8, in figure 6, that when the core rotation is significant 
(as for -0.4 < I ' G  0), the radial component of velocity in the core is zero. This is 
consistent with the Taylor-Proudman theorem (see, for example, Batchelor 1967) 
where, for an inviscid fluid rotating at a constant angular speed, the axial and 
tangential components of velocity are invariant with z and the radial component is 
zero. Only when the rotation is zero or very small (as for - 1 < I' < -0.6) does radial 
inflow occur in the core. 

Comparison between the computed and measured velocity profiles is made in $4. 

3. Experimental apparatus 
Figure 7 shows a schematic diagram of the experimental rig. The disks were 762 mm 

diameter, disk 1 was made from transparent polycarbonate and disk 2 from steel, and 
the axial spacing between the disks produced a gap ratio of G = 0.12. A polycarbonate 
shroud was attached to the periphery of each disk, and each shroud and disk assembly 
could be rotated up to 1500 rev/min in either direction by means of a thyristor- 
controlled electric motor. The speed was measured, with an uncertainty of & 1 rev/min, 
by means of a transducer and timer-counter. The rig was designed to allow a radial 
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FIGURE 7. Schematic diagram of experimental apparatus. 

outflow of cooling air between the disks, and the air could be admitted to the system 
through two gauze tubes, of 100 mm diameter, each attached to one of the disks: the 
ratio of the radius of the tube, a, to that of the disks, b, was a / b  = 0.13. 

The radial and tangential components of velocity between the disks were measured 
at x = 0.6, 0.7, 0.8 and 0.85 using a single-component LDA system. The optics were 
arranged in an off-axis back-scatter mode 'looking through' the polycarbonate disk, 
as shown in figure 7. The system comprised a 4W Spectra-Physics argon-ion laser 
together with TSI transmitting optics, frequency shift and receiving optics. The 
wavelength was 514.5 nm and the power at the 'probe volume' was up to 350 mW. A 
converging lens of 120 mm focal length and a beam spacing of 50 mm produced a 
probe volume of 0.34 mm length and 34 pm diameter with a fringe spacing of 1.39 pm. 

The Doppler signal was processed using a TSI IFA-750 burst correlator, which could 
measure frequencies up to 90 MHz with signal-to-noise ratios as low as -5 dB. A 
Viglen PC was used in conjunction with the processor to control the position of the 
x-y traversing table on which the optics were mounted. When the signal had been 
validated by the processor, the PC controlled the movement of the table to its next 
position. As only one component of velocity could be measured at any one time, it was 
not possible to measure the turbulence kinetic energy; it was necessary to rotate the 
transmitting optics manually through 90" to obtain the second component. 

The probe volume could be located with a positional uncertainty of 0.13 mm, and 
it was possible to obtain measurements in the air as close as 0.5 mm from the 
polycarbonate disk and 1.5 mm from the steel one. It was also possible to make 
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measurements with the probe volume inside the polycarbonate disk, which produced 
Doppler signals from 'scattering sites' or impurities within the material. With the disk 
rotating, the optics were rotated manually until the Doppler frequency was zero : this 
corresponded to the radial direction, and rotation of the optics through a further 90" 
corresponded to the tangential direction. Measurements of the disk speed with the 
LDA system were within 0.5% of those measured by the timer-counter. 

The air between the disks was 'seeded' with oil particles of around 1 pm diameter, 
produced from a Dantec particle generator. The particles were released into the air in 
the laboratory close to the disks, and sufficient particles were ingested through the 
clearance between the contra-rotating shrouds to produce acceptable Doppler signals. 

4. Comparison between computation and experiment 
Before making a comparison between the computations and the measurements 

obtained from the rig described in $3, the computations were compared with 
experimental data obtained from a number of sources including the velocity 
measurements of Itoh, Yamada & Nishioka (1985) for a rotor-stator system and those 
of Dijkstra & van Heijst (1983) for contra-rotating disks; details are given by Kilic 
(1993). The agreement was found to be mainly very good, and an example of the 
comparison with the data of Dijkstra & van Heijst for r = -0.3, Re, = 2.04 x lo4 and 
G = 0.07 is shown in figure 8. 

It should be pointed out that, in the apparatus of Dijkstra & van Heijst, the shroud 
was attached to disk 1. The velocity of the water between the disks was measured using 
stereophotography : polystyrene particles were illuminated by flashes of stroboscopic 
light and the resulting traces were photographed. Knowing the time taken for the 
particles to move a measured distance enables the speed to be found, and the results 
( y / Q ,  b and V,/sZ, b) are presented between radial limits of rmzn and rmns, or xmiT1 and 
x,,, in non-dimensional terms. The current laminar computations, which are 
presented for the values of xmin and x,,, given for the experiments, are in good 
agreement with the experimental data and with the computations of Dijkstra & van 
Heijst; the latter computations are not shown in figure 8. Computations of the value 
of xst, the non-dimensional radius of the stagnation streamline on the slower disk, were 
also in good agreement with both the computations and experimental data of Dijkstra 
& van Heijst. 

Figures 9-14 show the comparison between the computations and the velocities 
measured in the rig described in $3 for Re, = lo5, G = 0.12 and - 1 < r < 0. (For all 
these figures, the left-hand axes correspond to disk 1, the faster disk.) The non- 
dimensional velocities, K/,/sZ, Y and V,/sZ, r ,  are presented for 0.6 d x < 0.85, which 
corresponds to the full extent of the experimental range. Computations are shown for 
both laminar flow and turbulent flow, using the turbulence model of Launder & 
Sharma (1974) for the latter case. 

A value of Re, = lo5 was chosen in an attempt to produce laminar flow. For a free 
disk (a disk rotating in an infinite quiescent environment), laminar flow becomes 
unstable at around x2Re, = 2 x lo5 and transition is usually complete around x2Re, = 

3 x lo5. For a rotor-stator system transition occurs at lower values of x2Re, but 
Re, = lo5 should ensure that, for r = 0, the flow remains laminar. (It is shown below 
that whilst the flow does remain laminar for r = 0, turbulent flow can occur at other 
values of r; for all values of r, however, the flow in the boundary layer on the faster 
disk always remains laminar.) 

Referring to figure 9 for r = 0, the rotor-stator case, the measurements and 
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computations show the expected laminar Batchelor-type flow structure. The computed 
radial components of velocity depart from the measured values near the stator at the 
smaller value of x, and the computed core rotation is larger than the measured value 
at the larger value of x; apart from these differences there is very good agreement 
between the computed and measured velocities. The close agreement between the 
laminar and turbulent computations shows that there is no tendency for the computed 
flow to become turbulent, although the thickening of the boundary layer measured on 
the stationary disk at the smaller radii does suggest that transition may be occurring 
here. 

Figure 10 shows the comparisons for r = -0.2 where again Batchelor-type flow 
occurs. The agreement between the computations and the measurements is not as good 
as for the rotor-stator case, particularly near the slower disk for the radial component 
of velocity and in the core for the tangential component. Again, the similarity between 
the laminar and turbulent computations suggests that there is no tendency for the 
computed flow to become turbulent, despite the fact that the measured values of V ,  
near the slower disk suggest that the radial inflow is turbulent. 

The flow structure shows signs of change in figure 1 1 for r = - 0.4. Near the slower 
disk, both computations and measurements show radial inflow for x = 0.85 and 
outflow for x = 0.6 and 0.7; for x = 0.8, the computations show inflow and the 
measurements outflow. These results are consistent with the two-cell structure 
described above : the experimental measurements suggest a stagnation point on the 
slower disk for 0.8 < xSt < 0.85, and the computations show 0.7 < x , ~  < 0.8. The 
experimental measurements for x = 0.6 and 0.7 show that the core rotation is virtually 
zero and radial inflow occurs over the entire region between the two boundary layers: 
this is consistent with Stewartson-type flow. The difference between the laminar and 
turbulent computations at x = 0.6, outside the boundary layer on the faster disk, 
suggests that transition from laminar to turbulent flow is beginning to occur in the 



Transitional $ow between contra-rotating disks 131 

0.2 1 

0. x = 0.85 1 

0.5 

- O . l  I 
-0.2-1 

0.2, 

21s V 

0.1 

- 0  

-0.1 

vr 
B l r  

-0.2 J 

0.2 7 

0.1 n x = 0.7 

-0.2 1 

l ' O  I 
I z/s 

0.2 7 

0.5 

0 

FIGURE 11. As figure 9 but for r = - 0.4. 

computations; the mainly good agreement between the computations and the 
measured velocities near the faster disk suggest that the flow remains laminar in this 
boundary layer. For this value of T, there appears to be a double transition: from 
laminar to turbulent flow and from Batchelor-type flow for x > xSt to Stewartson-type 
flow for x < x,~. 

The results shown in figure 12 for r = -0.6 show further evidence of this double 
transition. For x = 0.6, there is good agreement between the turbulent computations 
and the measured velocities, both of which show the Stewartson-type flow structure; 
although not shown here, the agreement for x = 0.7 and 0.8 was also good. The 
laminar computations show a Batchelor-type flow structure, but the large differences 
between these computations and the turbulent ones indicate that, outside the boundary 
layer on the faster disk, the flow has become turbulent. 
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Figures 13 and 14, for r= -0.8 and - 1.0 respectively, show mainly good 
agreement between the turbulent computations and the measurements. Although the 
laminar computations show Batchelor-type flow, complete with contra-rotating cores 
of fluid, both the turbulent computations and the measured velocities indicate that 
Stewartson-type flow occurs. 

It is interesting to observe from figure 14 that, for r = - I ,  the computed laminar 
and turbulent flow and the measured radial components of velocity are in good 
agreement in the boundary layers on both disks. This suggests that, although the radial 
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inflow outside the boundary layers is turbulent, the flow inside the boundary layers 
remains laminar. It would appear, therefore, that laminar Batchelor-type flow is 
basically unstable for r = - 1, even for local rotational Reynolds numbers as small as 
x2Re4 = 3.6 x lo4. The computed laminar velocity distributions show points of 
inflexion in the radial inflow in the mid-plane7 and these are associated with instability 
(see Schlichting 1979). Also, at r / b  = 1, the contra-rotating axial flows in the boundary 
layers on the shrouds meet head-on in the mid-plane, creating a large source of 
turbulence in the radial inflow. Thus, whilst laminar Batchelor-type flow can be 
computed for r = - 1, it does not exist in practice at these rotational Reynolds 
numbers. Many unsuccessful attempts were made to find experimental evidence of 
Batchelor-type flow at r = - 1, and additional experiments conducted at values of the 
local rotational Reynolds numbers as low as x2Re4 = 2 x lo4 produced no proof of its 
existence; it was not practicable to conduct experiments at smaller values. Batchelor’s 
(1951) statement that such flows ‘may not be realizable experimentally’ appears to be 
true. 

With respect to the performance of the Launder-Sharma turbulence model, there is 
a tendency for it to predict larger regions of laminar flow than have been measured 
experimentally. This is a common characteristic of low-Reynolds-number k-e 
turbulence models, and additional computations by Kilic (1993) using Morse’s (1988, 
1991 a, b) turbulence model showed that there was no significant overall improvement 
over the Launder-Sharma model. Both models captured the main features of the 
‘ double transition’ but neither achieved accurate predictions near the slower disk 
during the transition process. Iacovides & Toumpanakis (1993) have shown that the 
incorporation of the so-called Yap correction for the turbulence lengthscale and a 
rotating-related modification for the dissipation rate can cure some of the problems 
associated with low-Re k-e models. These modifications have led to improved 
predictions of the velocity distribution for a rotor-stator system but, as far as the 
authors are aware, they have not been applied to contra-rotating disks. 
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5 .  Conclusions 
A combined computational and experimental study has been made of transitional 

flow between contra-rotating disks in the range - 1 < T ,< 0, 0.6 < x < 0.85 and 
Re, = lo5. 

For Re, = lo5 and r = 0, laminar and turbulent computations and experimental 
measurements show that Batchelor-type flow occurs: there is radial outflow in a 
boundary layer on the rotating disk, inflow in a boundary layer on the stationary disk, 
and a rotating core of fluid between the boundary layers. For r = - 1, the laminar 
computations produce Batchelor-type flow : radial outflow occurs in boundary layers 
on both disks and inflow in a shear layer in the mid-plane, on either side of which is 
a rotating core of fluid. By contrast, the turbulent computations and the measured 
velocities for r = - 1 show a Stewartson-type flow structure: radial outflow occurs in 
boundary layers on the disks and inflow occurs throughout the non-rotating core 
between the boundary layers. It appears that, for T = - 1, Batchelor-type flow is 
unstable: although the radial outflow in the boundary layers on the disks can remain 
laminar, the inflow creates turbulence and Stewartson-type flow occurs in practice. 
Laminar computations always produce Batchelor-type flow, but experimental 
measurements have found no evidence for its existence at r = - 1 even at local 
Reynolds numbers as small as x2Re$ = 2 x lo4. 

The turbulent computations have shown that, for intermediate values of T, 
transition from Batchelor-type flow to Stewartson-type flow is associated with a two- 
cell structure, the two cells being separated by a streamline that stagnates at x = xSt on 
the slower disk; Batchelor-type flow occurs for x > xSt and Stewartson-type flow for 
x < xst. The measured velocities for I' = - 0.4 confirm this two-cell structure. 

For Re, =. lo5, transition from Batchelor-type flow to Stewartson-type flow is 
associated with transition from laminar to turbulent flow, and consequently the 
accuracy of the computations depends strongly on the transitional characteristics of 
the turbulence model used. A common characteristic of low-Rek-e models is to 
produce unrealistically large regions of laminar flow, and the Launder-Sharma model 
predicted that the flow would remain laminar in regions where the measurements 
showed that it was turbulent. This problem is particularly evident for the boundary- 
layer flow near the slower disk where, for -0.4 ,< r < 0 and 0.6 < x < 0.85, the 
computations and measurements show laminar and turbulent flow, respectively ; as a 
consequence, the transitional flow structure is poorly predicted for r = -0.4. For all 
the values of r tested, however, the agreement between the computed and measured 
velocities in the boundary layer on the faster disk is mainly good, and both show the 
flow to be laminar; for - 1 < r < -0.6, the agreement between computations and 
measurements is good over almost the entire region in which measurements were made. 
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